University of Anbar College of Engineering Chemical & Petrochemical Engineering

جامعة الانبار كلية الهندسة قسم الهندسة الكيميانية والبتروكيميانية

تقرير التقييم الذاتي

قسم الهندسة الكيميائية والبتروكيميائية

للعام ١٩٠٠-٢٠٢٩

د. عمر مصطفى حسين رئيس قسم الهندسة الكيميانية والبتروكيميانية

College of Engineering Academic Accreditation Committee

Self-Assessment Report

Bachelor of Chemical & Petrochemical Engineering- University Of Anbar

2021

Dr. Omar M. Hussein Chair, Department of Chemical and Petrochemical Engineering University of Anbar Ramadi, Anbar Iraq

E-mail: Omalkuba@uoanbar.edu.iq

Mr. Khaled J. Hamid

Co-ordinator of the Department, and a member of Central ABET Committee

University of Anbar

Ramadi, Anbar

Iraq

E-mail: khaled.j.h@uoanbar.edu.iq

Table of Contents

Chapter 1 Introduction

University of Anbar4	
Chapter 2 Program Educational Objectives (Criterion-1)5	
2.1. Introduction	
2.1.1. Vision and Mission of University of Anbar 5	
2.1.2. Vision	
2.1.3. Mission	
2.1.4. Vision and Mission of Chemical & Petrochemical Engineering	Department
2.1.5. Department Mission V/S University of Anbar Vision and Mission6	
2.1.6. Program Education Objectives (PEOs)	
2.1.7. Consistency of PEOs with the Program Mission	
2.2. Processes to Evaluate the Attainment of PEOs	
Chapter 3 Graduate Outcomes (Criterion-2)	
3.1. Program Learning Outcomes	
3.2. Mapping of PLOs to PEOs	
3.3. Mapping of Courses to PLOs	
Chapter 4 Curriculum (Criterion-3)12	
4.1. Program Structure 12	
4.1.1. Curriculum Design12	
4.1.2. Semester Wise Distribution of Courses	

Chapter 5 Continuous Improvement (Criterion-4)23

5.1 Achievement of Graduate Outcomes	23
5.2 Actions for Continuous Improvement	25
Chapter 6 Students (Criterion-5)	26
6.1 Student Admission	26
6.1.1 Admission Criteria	26
6.1.2 Annual Intake	
6.1.3 Admission on Migration Basis	26
6.2 Academic and Career Guidance to Students (Student Counseling))26
6.3 Students' Workload, Class Sizes and Completion of Courses	27
6.3.1. Net Instructional Hours	
6.3.2. Student Academic Load	27
6.3.3. Class Size	27
6.3.4. Course Completion	27
6.3.5. Semester Academic Load	27
6.3.6. Completion of Courses	27
Chapter 7 Faculty (Criterion-6)	28
7.1. Academic Staff	
7.2. Strength and Competencies	28
7.2.1. Full Time Dedicated Faculty	28
7.2.2. Shared Faculty	28
7.2.3. Academic structure	28
7.2.4. Faculty Workload and Student-Teacher Ratio	
7.3. Outcome Based Education (OBE) Training	
Chapter 8 Administrative Support (Criterion-7)	

8.1 Leadership and Administrative Services	
8.2 Faculty support	
8.3 Technical & Administrative Staff Support	31
Chapter 9 Financial support (Criterion-8)	32
9.1. General	
9.2. Financial Support to Faculty	32
9.3. Financial Resources	
Chapter 10 Facilities (Criterion-9)	
10.1 Introduction	
10.2. Teaching and Learning Facilities	34
10.3. Laboratories and Workshops	34
Appendices	

Chapter 1 Introduction

1.1. University of Anbar

University of Anbar was established as a state University in 1987. The University includes 19 colleges which covers wide range of knowledge such as Arts, Business Administration, Education, Engineering, Law, Medicine, Islamic Studies and Science.

University of Anbar first had started the college of engineering in 1987. Civil engineering and mechanical engineering were the first two established departments. Realizing the importance of Industrial development of the province of Anbar, the Department of Chemical & petrochemical Engineering was established in 2012.

The Department currently employs highly qualified and experienced faculty members to teach fundamental courses in a pleasant environment. Students have access to laboratories to learn and apply fundamental Chemical&petrochemical Engineering Principles. The laboratories include Heat Transfer, Chemistry Lab, and Fluid Mechanics. A Library and computer lab are also available for the students.

This report is prepared for national accredition for the first time.

1.2 Options

The Chemical & Petrochemical Engineering Department offers a

Bachelor of Science in Chemical Engineering (BSChE) degree program.

1.3 Modes Delivery Program

The program is conducted through face to face learning as well as electronic learning.

1.4 Program locations

All program requirements are conducted within university of Anbar, ramadi.

1.5 Public Disclosure

PEO and GO are published at the website of university of Anbar, college of engineering: <u>https://www.uoanbar.edu.iq/EngineeringCollege/English/index.php</u>

1.6 Previous Evaluations and Actions

This the first time to attain accredit.

Chapter 2 Program Educational Objectives (Criterion-1)

2.1. Introduction

This section deals with the features of the Program Educational Objectives (PEOs) prepared in accordance with the Iraqi Engineering Council Accreditation 2019. The PEOs for the Chemical & Petrochemical Engineering Program describe accomplishments that graduates are expected to attain within four to five years after graduation.

The PEOs of our undergraduate education program are in alignment with the Vision and the Mission of the University of Anbar.

2.1.1. Vision and Mission of University of Anbar

Vision and Mission statements are developed to serve as foundational guidelines for instituting PEOs. The Vision and Mission of University of Anbar are published on all important forums including the University Website, Departmental notice boards, chairperson / Incharge offices, latest prospectus, conference halls.

2.1.2. Vision

The University of Anbar is searching for a pioneering position in higher education and scientific research and developing the academic programs for achieving the sustaining development.

2.1.3. Mission

The university seeks to provide a distinct quality of education, teaching and scientific research via adopting strategies of analytical and critical thinking for rehabilitation of human resources in the levels of knowledge, thinking, and skills in a creative and competitive environment.

2.1.4. Vision and Mission of Chemical & Petrochemical Engineering Department

Vision Statement

To be a pioneer in education and research in the field of chemical & Petrochemical engineering

Mission Statement:

The Department of Chemical & Petrochemical Engineering seeks to give its students an outstanding education through an academically accredited program, to serve the community, contribute to the advancement of the profession of chemical engineer, and conduct innovative research.

2.1.5. Department Mission V/S University of Anbar Vision and Mission

From statements it is clear that Departmen's Mission statements are aligned with University Mission.

2.1.6. Program Education Objectives (PEOs)

Program Educational Objectives (PEOs) are the attributes and capabilities that the graduates are expected to exhibit within few years after graduation.

The BSc (Chemical & Petrochemical Engineering Program) will yield graduates, who can:

- PEO 1: Preparing and qualifying engineers in approved engineering disciplines.
- PEO 2: Contribute to support scientific production.
- PEO 3: Establishing cultural links with local and Arab universities.
 These Program Educational Objectives and mission statements are published on

the website of Chemical & Petrochemical Engineering Department University of Anbar.

The educational objectives of Chemical & Petrochemical Engineering program are in line with the Mission of the University and the Department.

2.1.7. Consistency of PEOs with the Program Mission

The established PEOs are consistent with the Mission of the Chemical & Petrochemical Engineering department. Some key phrases of the PEOs and Chemical & Petrochemical Engineering Program Mission are mapped in Table 2-1.

	PEOs	Mission of dep	artment	
		outstanding	serve the	innovative
		education	community	research
1	Preparing			
	and			
	qualifying			
	engineers			
2	scientific			\checkmark
	production			
3	cultural links			
	with local			
	and Arab			

Table ^۲-¹ Mapping of PEOs with the Program Mission

universities	
--------------	--

2.2. Processes to Evaluate the Attainment of PEOs

Figure 2-1 explains PEOs assessment process and review method.

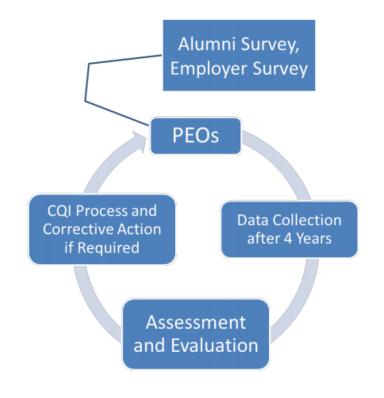


Fig. 2-1 PEO assessment

As a continuous process, the CHPE department seeks feedback from its constituencies, such as the senior exit students and faculty members, on the validity of its PEOs. Some tools were used in the assessment of the PEOs, as the following Table 2:

- a. Senior exit student survey
- b. Faculty survey.

Table 2 shows the achievement of BS.c Program's PEOs. Achievement of these PEOs has been estimated based on the end-of-semester program outcome achievements. An achievement of Good (60%) or more to be acceptable.

PEOs	Senior exit stu	Senior exit student survey		survey
	No.	%	No.	%
Professional Presence	High	83	High	82
Workforce Skilled in Integrating Engineering, Design, and modern Technology	Average	59	High	76
Leadership in Research, Innovation and Design	High	82	High	77
Ethical Reasoning, Behaviour and Professionalism	Average	51	Good	69
Communication	High	75	Good	61
Personal Engagement	Good	60	Good	62

Table 2: BS.c Program's PEOs Level of Achievement

2.3 Program Constituencies

The CHPE program identifies its significant constituencies as its students, faculty, alumni, the engineering profession and prospective employers.

Chapter 3 Graduate outcomes (Criterion-2)

3.1. Program Learning Outcomes

The graduate attributes have been adopted as Program learning outcomes (PLOs) of Chemical & Petrochemical Engineering program and approved by department. The PLOs are publicized through college website.

Following is the list of Program Learning Outcomes (PLO) which graduates of Chemical& Petrochemical Engineering Program will attain during their stay in University of Anbar.

1. **Engineering Knowledge** :an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.

2. **Design/Development of Solutions** : an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.

3. **Communication** :an ability to communicate effectively with a range of audiences.

4. **Ethics**; an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.

5. **Individual and Teamwork** :an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.

6. **Investigation**: an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.

7. **Modern Tool Usage**: an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

The most benefit of defining PLOs is to ensure the achievement of PEOs.

3.2. Mapping of PLOs to PEOs

For the achievement of Program Educational Objectives, PLOs must be designed in a way that a relationship can be developed between PLOs and PEOs.

The PLOs of Chemical& Petrochemical Engineering Program are well-mapped with the PEOs as illustrated in Table3-1.

Table	۳-۱ PLOs	s and PEOs	Mapping
-------	----------	------------	---------

No.	PLOs	PEO 1	PEO 2	PEO 3
1.	Engineering Knowledge			
2.	Design/Development of Solutions	\checkmark		
3.	Communication			
4.	Ethics			
5.	Individual and Teamwork			
6.	Investigation			
7.	Modern Tool Usage			

3.3. Mapping of courses with PLOs

The courses are systematically designed to be mapped to the relevant PLOs, so that all PLOs are covered properly through the courses in the curriculum. The mappings of the courses with the PLOs are shown in Table 3-2.

Table 3-2 mappings of the courses with the PLOs

Semester	Course No.	Course Title	Engineering Knowledge	Design/Development of Solutions	Communication	Ethics	Individual and Teamwork	Investigation	Modern Tool Usage
1.	CHE1111	English Language (I)							
	CHE1112	Human Rights				\checkmark			
		Calculus (I)							
		Chemistry							
		Physics (I)							
		Computer Science							

		Principles Of Chemical Engineering (I)					
2.	CHE1111	English Language (II)					
	CHE1112	Engineering workshops					
		Calculus (II)					
		Organic Chemistry					
		Physics (II)					
		Engineering drawing					
		Principles Of Chemical Engineering (II)					
3.	CHE1111	Democracy				\checkmark	
	CHE1112	Arabic language				\checkmark	
		Calculus (III)	\checkmark	\checkmark			
		Physical Chemistry					
		Mechanics		\checkmark			
		Fluid mechanics I					
4.	CHE1111	Engineering materials					
	CHE1112	thermodynamics					
		Calculus (IV)	$\sqrt{1}$				
		Analytical Chemistry	$\sqrt{1}$				
		Fluid (II)			_		
			N				,
		Computer Science	\checkmark	\checkmark			\checkmark
		Industrial Chemical technology (I)					
	CHE1111	Mass transfer	V		\checkmark		
5.	CHE1111	Heat transfer I	√		1		
	CHE1112	Composite materials					
		Unit operation I	\checkmark				
		Reactor design I					
		Petrochemical industries I					

		Engineering statistic							
		Properties of petro-gas products	√						
6.	CHE1111	Heat transfer II							
	CHE1112	Water treatment							
		Petrochemical industries II							
		Unit operation II							
		Reactor design II	$\overline{\mathbf{v}}$						
		Engineering economics							
		Natural gas technology							
7.	CHE1111	Petrol engineering I			√				
7.	CILLIIII		N		V				
	CHE1112	Process control	\checkmark	\checkmark					
		Equipments design							
		Transport phenomena		\checkmark					
		Pollution engineering							
		Project design I					\checkmark	\checkmark	
8.	CHE1111	Petrol engineering II							
	CHE1112	Industrial Safety							
		Corrosion engineering							
		Catalyst engineering							
		Modeling							
	<u> </u>	Ethics							
		Project design II							
		Total	50	43	9	11	2	6	2

Chapter 4 Curriculum (Criterion-3)

4.1 Program structure and content

The B.Sc. Chemical & Petrochemical Engineering is a four-year degree program comprising of eight semesters. The total number of courses offered is 54 (inclusive of Design Project) with total 150 credit hours.

The curriculum of this program is clearly structured and is composed on the courses in following discipline:

- 1 Basic Sciences courses
- 2 Humanities courses
- 3 Management sciences courses
- 4 Interdisciplinary courses
- 5 Chemical Engineering courses

4.1.1. Study plan

The non-engineering courses has around 32% weight age while the remaining is for engineering courses.

The Engineering domain includes Engineering fundamentals, breadth and depth, and elective courses. A comprehensive Final Year Project is also part of the curriculum.

The Non -Engineering domain contains courses on communication, ethical and moral responsibilities, mathematics, physics, pure and applied chemistry and management sciences.

Domain	Knowledge	Total	Total	%
	Area	Courses	Credits	Overall
Non-	Humanities	7	16	32%
Engineering	Management	2	5	
	Sciences			
	Natural	7	24	
	Sciences			

Table 4-1Summary of study plan

	Sub Total	16	45	
Engineering	Computing	4	9	68%
	Engineering	9	32	
	Foundation			
	Major Based	12	41	
	Core			
	Inter-	3	4	
	Disciplinary			
	Engineering			
	Senior	2	6	
	Design			
	Project			
	Industrial	0	0	
	Training			
	Sub Total	30	93	
	Grand total	54	150	100

Table ٤-۲ Breakup of courses

Knowledg	Subje	S.	Cours	Theor	La	Cr.	Tot.	Tot.	%	%
e	ct	No	e	у	b.	Η	course	cro	ar	ove
Area	area	•					S	dets	ea	rall
Non-engine	eering									
Humanitie	English	1	English	- 2	0	2	3	16	40	33
S	_		1						%	%
		2	English- 2	- 2	0	2				
		3	English- 3	- 2	0	2	-			
	Social Scienc	4	Human rights	2	0	2	2			
	e	5	Enginee ring Econom ics		0	2				
	Culture	6	rthics	2	0	2	1			
Natural	physics	7	physics	3	1	4	1	4	10	

Sciences									%	
	Mathe matics	8	Mathem atics-I	3	0	3	4	12	30 %	
		9	Mathem atics-II	3	0	3				
		10	Mathem atics-III	3	0	3				
		11	Mathem atics-IV	3	0	3				
	Chemis try	12	Chemist ry-I	3	1	4	2	8	20 %	
		13	Chemist ry-II	3	1	4				
		·			·	Total	13	40	100 %	
Engineerin	g Domaiı	1						1		
Computin g	Funda mental s & Progra mming	14	Comput er & Comput ation	2	1	3	1	3	4 %	67 %
Engineern g Foundatio n	Engine erin g Founda	15	Chemic al enginee ring -I	4	0	4	9	33	49 %	
	tio n	16	Chemic al enginee ring -II	4	0	4				
		17	Thermi dynami cs-I	4	0	4				
		18	Thermi dynami cs-II	4	0	4				
		19	Fluid Mechan ics-I	3	1	4				
		20	Fluid Mechan ics-II	3	1	4				

		21	Heat	3	1	4				
		-1	Transfer -I							
		22	Heat	3	1	4				
			Transfer -II							
		23	Mass Transfer	3	0	3				
Major Based	Major Based	24	Reactor design	3	0	3	5	12	17 %	
Core	Core (Bread	25	Process control	2	1	3				
	Th)	26	Equipm ent design	2	0	2				
		27	Enginee ring material s	2	0	2				
		28	Chemic al industri es	2	0	2				
	Major Based	29	Industri al safty	2	0	2	5	11	17 %	
	Core (Depth)	30	Transpo rt phenom ena	3	0	3				
		31	modelin g	2	0	2				
		32	Numeri cal analysis	2	0	2				
		33	Water treatme nt	2	0	2				
Inter- disciplinar y Engineeri		34	Enginee ring drawing	0	2	2	2	4	6 %	

n g Breadth									
	35	Worksh op practise	0	2	2				
Chemical Engineeri n g Project	36	Project design I	0	2	2	2	4	6 %	
		Project design II	0	2	2				
					Total	24	67	10 0 %	

4.3. Alignment with PEOs

The program educational objectives are what the program aspires its students to achieve within 4 years of graduation. While this cannot be directly measured by the institution, the program does map the program educational objectives to the student outcomes as discussed in Criterion 3(Table 3.2). The rationale is that if all course and student outcomes are achieved, graduates of the program are prepared for the program educational objectives. Table 4.2 provides a sample of courses that support the program educational objectives to help demonstrate this relationship.

Table 4.2. Relationship between program educational objectives, student outcomes, and sample courses in the program that meet both.

PEOs	Student Outcome	Sample of Related Courses
1. Preparing and	1,2,4,5,7	Fluid flow, Equipment design,
qualifying engineers		Reactor design
2. scientific production	2,3,5	Transport phenomena, project
		design
3. cultural links with	4	Ethics, project design
local and Arab		
universities		

4.1 4 Attainment of GOs

Each course is covered by sufficient numbers of CLO. Every course is linked with PLO through CLO and PLO mapping which is indicated in course profile. The Blooms taxonomy domains for all the CLOs are also defined in terms of affective, cognitive and psychomotor domain with respective learning level. Mapping of courses with PLOs is given in PEC Annexure-D.

NO.	Code	Course title	credits	Н	ours/ wee	k	Perquisite
				Theo.	Prac.	Tut.	
1	CHME 101	Principle of chemical Eng. I	3	3	0	1	None
2	CHME 102	Organic chemistry	3	2	2	0	None
3	CHME 103	Work shop	1	0	3	0	
4	CHME104	Computer programing	2	1	2	0	
5	CHME105	Eng. Drawing & auto cad	2	1	3	0	
6	CHME 201	Principle of chemical Eng. II	2	2	0	1	CHME 101
7	CHME 202	Principle of chemical Eng. III	3	3	0	1	CHME 201
8	CHME 203	Fluid mechanics	3	3	0	1	None
9	CHME 204	Physical chemistryl	3	2	2	0	None
10	CHME 205	Physical chemistry	3	2	2	0	CHME 204
11	CHME 206	Engineering materials	3	2	2	0	None
12	CHME 207	Analytical chemistry	3	2	2	0	None
13	CHME 208	Fluid mechanics	3	2	2	1	CHME 203
14	CHME 209	Properties of petroleum & natural gas	3	2	2	0	None
15	CHME 210	Chemical industries	2	2	0	0	None
16	CHME 301	Thermodynamics	3	3	0	1	CHME 205
17	CHME 304	Mass transfer	2	2	0	1	None
18	CHME 305	Mass transferll	2	2	0	1	CHME 304
19	CHME 306	Thermodynamic	3	2	2	1	CHME 301
20	CHME 307	petrochemical industries	2	2	0	0	None
21	CHME 308	Reactor design	3	3	0	1	CHME 202
22	CHME 309	Heat transfer	3	3	0	1	None
23	CHME 310	Reactor design	3	3	0	1	CHME 308

4.1.5 Prerequisite Structure

24	CHME 311	Heat transfer	3	2	2	1	CHME 309
25	CHME 312	Environmental Eng.	2	2	0	0	None
26	CHME 313	Eng. Economy	2	2	0	1	None
27	CHME 401	Unit operations	3	3	0	1	CHME 305
28	CHME 402	Unit operations	3	2	2	1	CHME 401
29	CHME 403	Equipment design	2	2	0	1	CHME 305 & CHME 311
30	CHME 404	Equipment design	2	2	0	1	CHME 403
31	CHME 405	Process controll	2	2	0	1	Eng 202
32	CHME 406	Process controll	3	2	2	1	CHME 405
33	CHME 407	Petroleum refining Eng.	3	3	0	1	None
34	CHME 408	Petroleum refining Eng.	3	3	0	1	CHME 407
35	CHME 409	Industrial safety	2	2	0	0	None
36	CHME 410	Modeling and simulation for chemical Eng.	3	2	2	0	CHME 303& Eng 202
37	CHME411	Engineering project	2	0	4	0	Level 3
38	CHME412	Engineering project	2	0	4	0	CHME411
			97	78	40	22	
					140		

4.1.5 Subject area requirements

Table 4.1 shows the requirements for the program.

4.1.6 Teaching and Learning Strategies

Teaching method is considered as most integral part of the teaching / lesson plan. At the start of semester, faculty members select an appropriate teaching method according to the learning level and desired outcomes. The teaching methods include presentations, lectures, videos, assignments, complex engineering problems.

The method may vary depending on nature of the subject and CLOs. The samples of the course profile for few courses are attached as Appendix.

4.3 Relating CLOs to GOs

This can be revealed as presented in course syllabus at appendix.

4.1.2. Semester Wise Distribution of Courses

course distribution is given in table 4-3.

Table ξ - π Semester Wise Distribution for Chemical & Petrochemical Engineering Courses

المرحله الاولى

					J	الفصل الأو
No.	Code	الماده الدراسيه	الاعتمادات	الاسبوع	الساعه/	
				نظري	عملي	تمارين
1	UR101	اللغه الانكليزيه (١)	3	3	0	0
3	CR111	ریاضیات(۱)	3	3	0	1
4	UR104	حقوق الانسان	1	1	0	0
5	CR113	کیمیاء عامه	3	3	0	0
6	CR114	فيزياء	3	3	0	0
7	CR115	مختبر فیزیاء(۱)	1	0	3	0
8	CR116	الحاسوب	3	2	3	1
9	UR103	مبادئ الهندسه الكيمياويه (۱)	3	3	0	1
10	CR 117	مختبر کیمیاء.	1	0	3	0
الكلي	<u> </u>	1	21	15	9	2
اللسي			21	26		

المرحله الاولى(الفصل الثاني)

No. Code	الماده	- 1.1 - XVI	ساعه/الاسبوع			
No.	Code	المادة	الاعتمادات	النظري	العملي	التمار ين
1	UR102	اللغه الانكليزيه(٢)	3	3	0	0
2	CR122	رياضيات (٢)	3	3	0	1

3	CR124	فيزياء(٢)	3	3	0	0
4	CR125	مختبر فیزیاء (۲)	1	0	3	0
5	CR112	رسم هندسي	2	2	0	0
6	CHE123	کیمیاء عضویه	3	2	2	0
7	CHE114	ورش هندسیه	1	0	3	0
8	CHE111	مبادئ الهندسه الكيمياويه (٢)	3	3	0	1
الكلي		·	21	17	11	3
-				31		

المرحله الثانيه

					الاول	الفصل
No.	Code	الماده	الاعتمادات	مه/الاسبوع	ساء	
				النظري	العملي	التمارين
1	UR105	الديمقر اطيه	1	1	0	0
2	CR121	رياضيات(٣)	2	1	2	0
3	CHE223	کیمیاء فیزیاویه	3	2	2	0
4	CHE124	مبادئ الهندسه الكيمياويه	3	3	0	1
5	CHE113	ميكانيك	2	2	0	1
6	CHE214	انتقال الموائع	3	3	0	1
7	CHE212	اللغه العربيه	3	3	0	0
الكلي			21	19	4	5
Ŧ				28	1	

المرحله الثانيه الفصل الثاني

No.	Code	الماده	الاعتمادات	ساعه/الاسبوع		
		نظري	عملي	تمارين		
1	CHE221	رياضيات	3	3	0	1

الفصل الأول

2	CHE221	المواد الهندسيه	3	2	2	1
3	CHE212	كيمياء تحليليه	3	2	2	0
4	CHE223	تكنلوجيا الصناعات الكيمياويه	2	2	0	1
5	CHE225	انتقال الموائع (٢)	3	2	2	1
6	CHE225	انتقال الكتله	3	3	0	1
7	CHE226	ديناميك الحراره	3	2	2	1
الكلي		1	21	18	6	5
÷				29	1	1

لمرحله الثالثه

اللفصل الأول

No	Codo	الماده	الاعتمادات	ساعه/الاسبوع	ساعه/الاسبور			
No.	Code		الإ عمادات	النظري	العملي <u>.</u>	التمارين		
1	CHE311	انتقال الحراره	3	3	0	1		
2	CHE312	هندسه مواد مرکبه	3	3	0	0		
3	CHE313	وحدات صناعيه(١)	3	3	0	0		
4	CHE314	تصميم المفاعل(١)	3	3	0	1		
5	CHE315	تكنلوجيا الصناعات البتروكيمياويه(١)	2	2	0	0		
6	CR123	الاحصاء الهندسي	3	3	0	1		
7	CR122	خواص المشتقات النفطيه والغاز	3	3	0	1		
Total		·	21	20	2	3		
			21 25					

المرحلة الثالثة/الفصل الثاني

No.	Code	Course Title	Credits	Hours / Week			
				Theo.	Prac.	Tut.	

	-			26		
الكلي			20	18	5	3
7	CHE327	تكنلوجيا الغاز الطبيعي	2	2	0	0
6	CHE326	الاقتصاد الهندسي	3	3	0	1
5	CHE325	تصميم المفاعل(٢)	3	3	0	1
4	CHE324	وحدات صناعیه(۲)	4	3	3	1
3	CHE323	تكنلوجيا الصناعات البتروكيمياويه(٢)	3	3	0	0
2	CHE322	معالجه مياه	2	2	0	0
1	CHE321	انتقال الحراره(٢)	3	2	2	1

المرحله الرابعه

الفصل الاول

No.	No. Code	الماده	الاعتمادات	ساعه/الاسبوع		
				النظري	العملي.	التمارين
1	CHE411	هندسه البترول(۱)	3	3	0	1
2	CHE412	السيطره على العمليات	3	2	2	1
3	CHE413	تصميم المعدات	3	2	2	0
4	CHE414	ظواهر الانتقال	3	3	0	1
5	CR413	هندسه التلوث	2	2	0	0
6	CHE416	تصمیم مشروع(۱)	2	0	4	0
الكلي			19	14	11	3
				26	I	

المرحله الرابعه

الفصل الثاني

No.	Code	الماده	الاعتمادات	ساعه/الاسبوع
-----	------	--------	------------	--------------

				النظري	العملي.	.تمارين
1	CHE421	هندسه البترول(۲)	3	3	0	1
2	CHE422	سلامه الموقع	2	2	0	0
3	CHE423	هندسه التاكل	2	2	0	1
4	CHE424	تكنلوجيا العوامل المساعده	2	2	0	0
5	CHE425	النمذجه	3	2	3	0
6	CHE426	تصميم المشروع(٢)	3	0	6	0
7	UR106	المهارات الهندسيه والاخلاق	3	3	0	0
الكلي		·	18	14	9	2
ə		18 25				

Chapter 5 Continuous Improvement (Criterion-4)

5.1 Achievement of Graduate Outcomes

5.1.1 Assessment Processes

Data collection is the most important part of the continuous quality improvement process. The assessment processes include both direct and indirect measures of outcome achievement, and it is carried out throughout the semester in the form of evaluation of quizzes, assignments, presentations, class projects, mid-term exams and final exam at the end of each semester. This data is used for assessment of CLOs. Additional data in the form of exaluate the attainment of PEOs after the completion of program of studies.

5.1.2 Frequency of Assessment Processes

The results of CLOs assessment for all the courses of the program when available after 4 years are used to evaluate the achievement of PLOs. However partial evaluation of achievement of PLOs can be made after every semester based upon courses conducted so far.

5.1.3 Expected level of attainment

Direct assessments are employed in our assessment process to better evaluate (in comparison to indirect assessment methods) whether students graduating from the program have attained the Student Outcomes. (1) An ability to apply knowledge of mathematics, science, and engineering

This is addressed in our program through the Student Outcomes. All mathematics, science and engineering courses must be passed with a grade of pass or better in order meet pre-requisite requirements and move forward in the curriculum.

(2) An ability to design and conduct experiments, as well as to analyze and interpret data

This is addressed in our program through Student Outcomes. To assess the extent to which our students have attained the ability to design and conduct experiments as well as to analyze and interpret data, we evaluate laboratory report and examination scores.

(3) An ability to design a system, component, or process to meet desired needs

This is addressed in our program through the Student Outcomes. To assess the extent to which our students have attained the ability to design a system, we evaluate performance on homework and projects in courses oriented toward design including (Design I, II), which is the capstone design course in the curriculum.

(4) An ability to function on multidisciplinary teams

This is addressed in our program through the Student Outcomes. To assess the extent to which students graduating from our program have attained these abilities, we evaluate individuals based on student work, student assessment of group members, and faculty observation.

(5) An ability to identify, formulate, and solve engineering problems

This is addressed in our program through the Student Outcomes. To assess the extent to which our students have attained the ability to identify, formulate and solve engineering problems, we evaluate performance on homework, examinations in courses oriented toward problem-solving.

(6) An understanding of professional and ethical responsibility

This is addressed in our program through the Student Outcome. To assess the extent to which students graduating from our program have attained an understanding of professional and ethical responsibility, we evaluate performance on homework, examinations in ethic courses.

(7) An ability to use the techniques, skills, and modern engineering tools

This is addressed in our program through Student Outcome. To assess the extent to which our students have attained this outcome, we evaluate performance on examinations, projects and lab reports focused on specific engineering techniques and tools.

5.1.4 Results of Evaluation and Analysis

	The Ave	rage of Ov	erall Outo	comes (Fir	st Semest	er)	
ABET Outcomes	1	2	3	4	5	6	7
Level One	72.44	63.39	57.87	53.66	51.23	44.47	50.76
Level Two	67.66	59.55	69.64	51.09	55.34	60.69	47.84
Level Three	59.72	49.99	50.86	59.56	56.67	68.74	49.72
Level Four	61.62	51.52	58.65	60.47	73.54	48.86	45.62
Average	65.36	56.11	59.25	56.16	59.19	55.69	48.48
	The Avera	age of Ove	erall Outco	mes (Seco	ond Seme	ster)	
Level One	59.27	44.58	47.45	51.32	53.45	48.54	50.46
Level Two	53.38	49.49	52.25	51.06	69.25	60.33	45.57
Level Three	43.53	57.14	77.15	53.44	57.58	55.35	47.45
Level Four	66.64	58.71	79.99	46.93	58.15	62.48	49.37
Average	55.70	52.48	64.21	50.69	59.61	56.61	48.21

Table 3: Average of Overall ABET Outcomes 2018 - 2019

5.1.5 Documentation

All electronic documents, Excel spreadsheets, and similar items related to assessing student outcomes as described in this section are stored in subfolder located in the departmental folder.

5.2 Actions for Continuous Improvement

5.2.1 Systematic data utilization

There are two distinct routes for identifying actions that will improve the program. In the first case, an individual instructor may choose to modify his/her course content based on experience, assessments of student learning, class performance on specific assignments, or data from the Direct Assessment Document for a course. Modifications of this type are

documented to the extent possible, including through the use of an optional Closing-the-Loop Document which instructors complete and upload to the appropriate subfolder in the departmental folder.

5.2.2 Re-assessment of Changes Results

Section 5.1 presented earlier describe the processes used for obtaining and evaluating direct and indirect outcome assessments.

Course	Curricular or	Rationale for Change	Impact of Change		
	Program Change				
ChE1	Added material on advanced processes in engineering	To increase student proficiency in not only conventional, but also advanced processes	prepared		
ChE2	Modified course delivery to be co-taught	To increase practice in core competency area	Provides time for feedback and increased enrollments.		

Table example of Improvements made to the Program

Chapter 6 Students (Criterion-4)

6.1 Student Admission

Admissions are based on secondary school level. The process of admission is discussed below:

6.1.2 Admission Criteria

University of Anbar is a public sector University. All seats are allocated as per the Admission Policy as approved by the Syndicate of the University. The admissions are offered to Chemical & Petrochemical Engineering program on the basis of available seats.

6.1.3 Annual Intake

Maximum number of intake students in Chemical & Petrochemical Engineering program is 30-40. This pertains to theory class of one section.

No.	Intake batch	Total student enrolled	No. of section(s)
1.	2018	37	1
2.	2019	33	1
3.	2020	31	1
4.	2021	44	1

Table °- 'Student Admissions

6.1.4 Admission on Migration Basis

Admission on migration shall be allowed in relevant discipline under extra ordinary circumstances subject to availability of seat(s) is in relevant discipline. Applicant must have passed First Year of studies completely in the institution where he/she was initially admitted. Admissions are only offered in Second Year.

Student admitted on migration basis are given exemption in all such courses of First Year which he/she has passed during study in previous institution. However, he/she shall be required to register and pass all such courses of the discipline in which he/she is offered admission which he/she has not studied in previous institution.

6.2 Academic and Career Guidance to Students (Student Counseling)

A faculty members are assigned as the student advisors for the students. The students are encouraged to freely consult the advisor for academic and career counseling. Every faculty member of the university is required to engage in advising students as a shared responsibility to help them identify and pursue their academic goals, actively participate in extracurricular activities, and to take advantage of emerging career opportunities in their respective domains.

6.3 Students' Workload, Class Sizes and Completion of Courses

6.3.1. Net Instructional Hours

A course credit hour defined as one contact hour per week (if a course is 3 credit hours, means 3 contact hours per week for 15 weeks). One laboratory credit hour shall be three hours of practical lab work per week for fifteen weeks.

6.3.2. Student Academic Load

The courses for each Semester along with their credit hours for theory and practical are notified in the prospectus. In Chemical& Petrochemical engineering program, 5-6 courses are offered in each semester of 14-19 credit hours.

6.3.3. Class Size

Theory classes consist of a single section. Maximum no. of students per workstation is 3.

6.3.4. Course Completion

A 3-credit theory course includes minimum 45 lectures in a semester. Instructors are required to submit a course teaching / lesson plan in first week of each semester, to the students.

6.3.5. Semester Academic Load

There are total of 8 semesters in the curriculum of chemical engineering program, around 6 courses per semester. Academic load in a semester is in the range of 15-19 credit hours.

6.3.6. Completion of Courses

Head of department ensures completion of courses as per schedule.

Chapter 7 Faculty (Criterion-6)

7.1. Academic Staff

Academic Staff includes local and foreign qualified PhDs, Masters and Bachelors in Chemical Engineering. One of the faculty is associated with local PhD program.

7.2. Strength and Competencies

The department has a wide range of experts in the area of Chemical Engineering. Department not only supports its academic staff to acquire higher education and skills but also motivate them to actively participate in research work.

7.2.1. Full Time Dedicated Faculty

There are ten full time dedicated faculty members working in Chemical & Petrochemical Engineering Department currently. Their details are given in the table below.

7.2.2. Shared Faculty

Chemical & Petrochemical Engineering Department appoints highly qualified faculty for non-engineering courses. Their details are given in [PEC-Annexure J].

7.2.3. Academic structure

The department has appropriate number of faculty members of various professional levels to run the program. There is no bar on the number of positions to encourage promotion of deserving candidates. The number of PhDs is 6. The number of MSc /Master of Engineering qualified faculty is 04.

7.2.4. Faculty Workload and Student-Teacher Ratio

Total enrolled students presently are 124. Full time dedicated engineering faculty is 10 along with 3 teaching associates having a student-teacher ratio of 12.4:1. Details of credit hours assigned to the faculty for the year 2020 is given below.

Faculty Workload

No.	Name	Degree	Last semester load			current semester load		
			Credit hours		Co. titles	Credit hours		Co. Titles
			TH	PR		TH	PR	
1.	Hamad khalifa	PhD	4	3	chemicstry	4	3	chemicstry
2.	Mustafa barzan	PhD	10	4	Heat,fluid	8	4	Heat,fluid

3.	Hamed ahmed	PhD	4	-	Chemical prin.	-	_	-
4.	Diyar ahmed	PhD	6	2	Thermo, static	8	2	Thermo, math
5.	Suha mohamd	PhD	8	-	Reactor, composit	9	-	Reactor, modeling
6.	Sufyan fadhil	PhD	14	-	Che.principle,phenomena,ch.industry	4	-	Ch. industry
7.	Omer mustafa	PhD	6	-	Equip.design,environment	6	1	Mass,water
8.	Khalid awad	MS	8	-	Math, statis	8	-	Math,economic
9.	Khalid hamed	MS	6	-	Chemistry, english	6	-	english
10.	Suha mehsdi	MS	6	6	Petro. Indus, computer	6	6	Petro inds, material
11.	Bdoor muhson	MS	6	-	Unit operation	6	-	Unit operation
12.	Yaser rajeb	MS	-	-	-	2	-	ethics

7.3. Outcome Based Education (OBE) Training

Some of the senior faculty members have got trainings on Outcome Based Education (OBE) system, its objectives, and the Outcome Based Assessment (OBA) at different workshops, seminars.

As a result, a faculty member now have sound understanding of PEOs, PLOs and CLOs as per OBE system. The trainings held for the OBE system online with support from university of Purdue,2021.

Chapter 8 Administrative Support (Criterion-7)

8.1 Leadership and Administrative Services

Dr. Omer Mustafa, has leadership and management responsibility for the Department including the undergraduate programs. In particular, Dr. Omer is responsible for assigning and managing faculty workload including service and teaching responsibilities, organization of the Committees.

8.2 Faculty support

8.2.1 Faculty recruitment

Requests for the hiring of new faculty are made in preceding the academic year of the search process. The chair makes requests to the Dean of the college, who then transmits requests to the university. Decisions on whether to approve hiring are made prior to the beginning of the academic year. Once approved, a departmental search committee is convened and develops an advertisement and recruitment strategy as well as hiring plan.

8.2.2 Faculty Retention and promotion

The Chemical Engineering faculty has been very stable. It is rare for a faculty member to leave the department, except through retirement. The strong retention rate seems to be the result of hiring faculty that are attracted to the small size, the emphasis on undergraduate teaching. The small size allows for close interactions and support among faculty, close contact between students and faculty, and a sense that the faculty have a strong input to the direction of the program.

8.2.3 Faculty development support

University supports faculty who are eligible to receive sabbatical leaves to conduct research, scholarly and creative activity, instructional improvement or faculty retraining. Any full-time faculty member, including lecturers, is eligible for a sabbatical leave if (s)he has served full-time for five years at the Academy. The sabbatical leaves may occur in either the fall or the spring semester at full-pay or at half-pay for both the fall and spring semester.

8.3 Technical & Administrative Staff Support

Currently, the Laboratory & Simulator Technician is the school's technical support. This person maintains and upgrades laboratory equipment, and purchases supplies for instructional laboratories.

8.3.1 Staff Size and Qualification

Table A-1 List of technical staff

Name	Qualification	Designation
Eng. Azalarab	BSc (Chemical eng.)	Lab Engineer
Eng. Osama ali	MSc (Che. Eng)	Lab engineer
Eng. Abo abaida al-rawi	BSc (petroleum eng.)	Lab engineer
Eng. Abdulla Ganim	BSc (Che. Eng)	Lab engineer

8.3.2 Staff Recruitment and Retention

the Department hires undergraduate student workers to aid in routine office related activities. This level of staffing is sufficient to meet program needs. Also, department offers opportunities to complete post graduate studies(MSc and PhD) for skilled engineers.

8.3.3 Staff Development and Promotion

Staff members receive training as needed or as requested. In some cases, such as when new software is rolled-out campus-wide, staff are required to attend training prior to using the new system. In other cases, staff members may request training through the Performance Management Process. In either situation, university staff with expertise in the appropriate area leads training. Training may occur through workshops or via online training programs.

Chapter 9 Financial support (Criterion-8)

9.1. General

Funds for University of Anbar are provided by Iraqi Government . Which cover salaries, maintenance, laboratories, library etc. Additional funds for development are provided as per Government priorities.

9.2. Financial Support to Faculty

University of Anbar is a public institution which provide faculty development program for higher education, skills development, on-job training, and miscellaneous development programs funded by government.

9.2.1. Faculty Pay and Allowances Packages

Faculty pay is in accordance with the financial ministry pay scale . All the allowances and benefits are offered as per Government rules. Details for pay scales are shown in Table9-1:

Designation	Pay scale grade
Professor	1-2
Ass. Professor	3-4
Lecturer	4-5
Ass. Lecturer	6
Lab engineer	7

Table 9-1University of Anbar pay scales for faculty and support staff

9.3. Financial Resources

Adequate financial resources are available for maintenance of well-equipped laboratories, latest apparatus, computer facilities with support staff, and day to day support of the department.

Summary of financial resources and University Budget is provided in following Table 9-2.

No.	Source of incom	Fiscal year 2020-2021		
1.	Recurring University Budget	100		
2.	Department of Chemical	10		
	&Petrochemical Engineering Recurring			
	Budget			
3.	University Development Budget	4		
4.	Tuition Fees and Others	2		
5.	Self-Finance	5		

Table ^-YUniversity of AnbarBudget (millions of ID)

Chapter 10 Facilities (Criterion-9)

10.1 Introduction

The Chemical& Petrochemical Engineering Department has wide connectivity and access of Wi-Fi network. The department has the facilities and infrastructure to support new trends in learning. All conference rooms, laboratories and classrooms provide support for learning. The department has the following facilities exclusively dedicated to undergraduate students.

10.2. Teaching and Learning Facilities

10.2.1. Lecture Halls

The department of Chemical & Petrochemical Engineering has proper teaching and learning facilities which include classrooms, and well- equipped labs.

Table 10-1Class Room and Office Available

Item	Available
Classroom	4
Labs	3
Faculty office	2

10.2.2. Central Libraries

University of Anbar has one Central Library having more than one thousand Engineering books.

10.3. Laboratories and Workshops

There are a number of laboratories having all the necessary facilities and equipment to carryout experiment by the students.

laboratories and workshop in the Department of Chemical & Petrochemical Engineering is given below:

- Heat Transfer/Lab
- Fluid Mechanics Lab
- Computer Lab
- Chemical Thermodynamics Engineering Lab

- Applied Chemistry
- Workshop
- Drawing Lab.

Appendices

Appendix A: COURSE SYLLABI

- 1. Course number and name: CHE123 Principles of Chemical Engineering (I)
- 2. Credits and contact hours: 4 unit, 4 contact hour/week
- 3. Instructor's or course coordinator's name: Sufyan Fadhil
- 4. *Text book, title, author, and year:* David M. Himmelblau, James B. Reggs, "Basic Principles and Calculations in Chemical Engineering", Seven Edition, Prentice Hall, 2004.
- 5. Specific course information;
 - a. Brief description of the content of the course (catalog description)
 - Overall, this course will provide an introduction to the principles and calculation techniques used in the field of Chemical Engineering as well as provide an exposure of the various areas and facets of current Chemical Engineering research.
 - b. Prerequisites: None
 - c. Required, elective, or selected elective (as per Table 5-1): Required
- 6. Specific goals for the course:
- a. Convert quantities/equations from one set of units to another.
- b. Estimate process variables including fluid density, flow rates, chemical composition of mixtures (mass fractions, mole fractions, and concentrations), pressure, and temperature.
- c. Write and solve material balance equations for single-unit and multiple-unit reactive/nonreactive processes.
- d. Understand the significance of the recycle, bypass, and purge streams and solve material balance equations for processes that have such streams.

7. Brief list of topics to be covered:

- a. Introduction, Dimensions, Units, and Their Conversion.
- b. Choosing a Basis, Temperature, Pressure and Its Units
- c. Introduction to Material Balances, Open and Closed Systems, Single component system
- d. The Chemical Reaction Equation and Stoichiometry
- e. Processes Involving a multi Reaction, recycle, bypass and purge

- 1. Course number and name: CHE124 Transport Phenomena
- 2. Credits and contact hours: 3 unit, 3 contact hour/week
- 3. Instructor's or course coordinator's name: Sufyan Fadhil
- 4. *Text book, title, author, and year:* Bird, Steweert, Lightfoot, "Transport phenomena", Ssecond Edition, 2002.
- 5. Specific course information;
 - a. Brief description of the content of the course (catalog description) Introduction and basics concepts of transport phenomena, momentum balance, energy balance and mass balance.
 - b. Prerequisites: None
 - c. Required, elective, or selected elective (as per Table 5-1): elective
- 6. Specific goals for the course:
 - a. The ability to apply chemical engineering methodology.
 - b. The ability to apply fundamental engineering knowledge to interpret experimental results.
 - c. The ability to choose and apply mathematical and numerical methods for solving transport phenomena problems
 - d. The ability to use experimental results to gather information for engineering designs.

7. Brief list of topics to be covered:

a. Introduction of transport phenomena, Newton's law of viscosity, Molecular Theory of the viscosity of gases at low density

- b. Shell momentum Balance and boundary conditions, Flow of a falling film, flow through a circular tube
- c. Fourier's law of heat conduction, shell energy balance and boundary conditions

d. Fick's law of binary diffusion ,temperature and pressure dependence of diffusivities

- 1. Course number and name: CHE133 Fluid Mechanics-I
- 2. Credits and contact hours: 4 unit, 4 contact hour/week
- 3. Instructor's or course coordinator's name: Mustafa B. Al-hadeethi
- 4. *Text book, title, author, and year:* Fundamentals of fluid mechanics by Dr. Mustafa B. Al-hadithi.
- 5. Specific course information;
 - a. Brief description of the content of the course (catalog description)
 - This course cover all major aspects of fluid mechanics, including fundamental concepts in fluid mechanics, pressure distribution in fluids, hydrostatic forces on plane and curved surfaces, manometer measurements, buoyancy and stability of floating body, basic concept of fluid flow, dynamics of fluid flow, applications of momentum theorem and applications of energy equation.
 - b. Prerequisites: None
 - c. Required, elective, or selected elective (as per Table 5-1): Required
- 6. Specific goals for the course:
 - a. Provide a thorough understanding and practical applications fluid mechanics problems analysis for determinate the solution.

b. Testing and examine fluid mechanics under different load conditions to find the solution behavior.

7. Brief list of topics to be covered:

a. Definitions of Stress on Fluid and Continuum

- b. Fundamental equation of fluid static and Applications
 - c. Stream line, path lines, one, two and three dimensional flow
 - d. Conservation of energy, Bernoulli's equation, Applications

APPENDIX B – FACULTY VITAE

- 1. Name : Sufyan Fadhil
- 2. Education :
 - Ph.D., Chemical Engineering, University of Baghdad, 2015
 - M.S., Chemical Engineering, University of Technology, Baghdad, 2010
 - B.S., Chemical Engineering, University of Technology, Baghdad, 2005.
- 3. Academic experience

University of Anbar, Ramadi, Chemical & Petrochemical Engineering Department Lecturer, 2016-Present, Full-time

- Non-academic experience Al-Rashid firm for food industries Chemical engineer, 2006-2006, Full-time
- 5. Certifications or professional registrations
- 6. Current membership in professional organizations Iraqi society of engineers
- 7. Honors and awards
- 8. Service activities (within and outside of the institution)
 - ABET Assessment Committee member: 2020
 - Faculty scientific Committee Member: 2019
- 9. Briefly list the most important publications and presentations from the past five years –title, co-authors if any, where published and/or presented, date of publication or presentation:
 - Sufuan Fadhil (2021)." Nanofiltration membranes for toxic lead removal-contribution of various mass transfer mechanisms on membrane performance". Indian chemical engineer.
 - Sufyan Fadhil, Marino, T., Hassan F. Makki, Qusay F. Alsalhy, Blefari, S., Macedonio, F., Giorno, L., Enrico Drioli, , Alberto Figoli. (2019)." Seawater desalination using PVDF-HFP membrane in DCMD process: Assessment of operating condition by Response Surface Method". Chemical Engineering Communications. Vol 2. 237-246.

10. Briefly list the most recent professional development activities:

• Faculty development workshop, University of Purdue, US,2021

• National accreditation assessor workshop, Iraqi ministry of higher eduction, 2021

APPENDIX C – EQUIPMENT

A comprehensive list of the equipment available in the Mechanical Engineering program was presented in the discussion of the following Criterion 6 in the discussion of the Laboratories and Manufacturing Spaces.

APPENDIX D – INSTITUTIONAL SUMMARY

- 1. The Institution
 - a. Name and address of the institution University of Anbar, ramadi, Iraq
 - Name and title of the chief executive officer of the institution Moshtaq T. Al-nada
 President, University of Anbar
 - Name and title of the person submitting the Self-Assessment Report Ameer Abdulrahman
 Dean, College of Engineering

2. Type of Control

University of Anbar is a state public institution. The system is the responsibility of President Moshtaq Al-nada and is governed the university board.

3. Credit Unit

At University of Anbar, one semester unit represents one class hour or three laboratory hours. One academic year is 30 weeks of classes, exclusive of final examinations.

4. Tables

	Academic		Enrollment year			Total	Total	Degree awarded			
	year		1st	2nd	3rd	4th	undergrad	grad	BSc	MS	PhD
Current2020-year2021		FT								0	0
	РТ	0	0	0	0	0					
1 year prior 2019-	2019-	FT								0	0
to current year	2020	РТ	0	0	0	0	0				
2 year prior	2018-	FT							0	0	0
to current year	2019	РТ	0	0	0	0	0				
3 year prior	2017-	FT								0	0
to current year	2018	PT	0	0	0	0	0				
4 year prior	2016-	FT								0	0
to current year	2017	РТ	0	0	0	0	0	0			

Table D-1. Program Enrollment and Degree Data

Table D-2. Personnel

Chemical & Petrochemical engineering

Year: 2021

	Head	Full Time Equivalent		
	FT	РТ	FTE	
Administrative				
Faculty (permanent)	10	4	12	
Other Faculty				
(excluding student				
Assistants)				
Student Teaching				
Assistants				
Technicians/Specialists				
Office/Clerical				
Employees				
Others				

(1)Data on this table should be for the term immediately preceding the visit.

(2) Persons holding joint administrative/faculty positions or other combined

assignments should be allocated to each category according to the fraction of the

appointment assigned to that category.

(3)For faculty members, 1 FTE equals what your institution defines as a full-time load.

(4)For student teaching assistants, 1 FTE equals 20 hours per week of work (or

service). For undergraduate and graduate students, 1 FTE equals 15 semester

credit-hours per term of institutional course work, meaning all courses - science,

humanities and social sciences, etc.

(5)Specify any other category considered appropriate, or leave blank.